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Abstract

In the semantics of natural language, quantification may have received more attention than any

other subject, and one of the main topics in psychological studies on deductive reasoning is syllo-

gistic inference, which is just a restricted form of reasoning with quantifiers. But thus far the

semantical and psychological enterprises have remained disconnected. This paper aims to show

how our understanding of syllogistic reasoning may benefit from semantical research on quantifica-

tion. I present a very simple logic that pivots on the monotonicity properties of quantified statements

– properties that are known to be crucial not only to quantification but to a much wider range of

semantical phenomena. This logic is shown to account for the experimental evidence available in the

literature as well as for the data from a new experiment with cardinal quantifiers (“at least n” and “at

most n”), which cannot be explained by any other theory of syllogistic reasoning. q 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

In logic, inference and interpretation are always closely tied together. Consider, for

example, the standard inference rules associated with conjunctive sentences:

w

w & c w & c

&-exploitation

c

&-introduction

w c w & c
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&-introduction allows a sentence of the form “w & c” to be derived whenever w and c are

given, and &-exploitation licenses the derivation of either conjunct of “w & c”. Of course,

this is what one should expect in view of the meaning of “&”, which is that “w & c” is false

unless w is true and c is true. In logic, the search for a system of inference is usually guided

by a (possibly informal) construal of a set of logical constants, and inference rules are

judged by the constraints they impose on the interpretation of such logical vocabulary as

they involve. Not that such customs are particularly remarkable, for there clearly must be

an intimate connection between the meaning of an expression and valid arguments which

make essential use of that expression. What is remarkable is that such connections have

not played an equally central part in the psychological study of deductive reasoning, and

especially of syllogistic reasoning.

In the past two or three decades, the semantics of natural language has come into its

own, and quantification may have received more attention than any other semantic topic.

During the same period, the psychological study of deduction made great advances, too,

and one of its central topics is syllogistic inference, which is just a restricted form of

reasoning with quantifiers. Strangely enough, these two enterprises have remained discon-

nected so far. All current approaches to syllogistic reasoning are based on first-order

mental representations, which encode quantified statements in terms of individuals.

Such representations are unsuitable for dealing with many quantified statements (e.g.

“Most A are B”, “At least three A are B”, etc.), but semanticists have developed a general

framework which overcomes these problems, and it will be argued that this framework

should be adopted in the psychology of reasoning, too.

The plan for this paper is as follows. I start out with a survey of the central facts

concerning syllogistic reasoning, and then go on to discuss the main approaches to deduc-

tive inference, arguing that each is flawed in the same way: they all employ representa-

tional schemes that are inadequate in principle for dealing with natural-language

quantification, and in this sense they are all ad hoc. I then turn to the interpretation of

quantified expressions, and sketch the outlines of a general framework for dealing with

quantification that is widely accepted in the field of natural-language semantics. Research

within this framework has shown that certain logical properties are especially important to

natural systems of quantification, and I contend that the very same properties go a long

way to explain the peculiarities of syllogistic reasoning.

It bears emphasizing, perhaps, that the general view on syllogistic reasoning adopted

here is not original with me. Indeed, the key ideas have a venerable ancestry and can be

traced back in part to medieval times and partly to the founder of syllogistic logic,

Aristotle. More recent developments in semantic theory have systematized these ideas

and incorporated them in a much broader framework. Therefore, my objective is a modest

one: to show that this view on quantification is relevant to the psychology of syllogistic

inference, too.

2. Syllogistic reasoning

The syllogistic language is confined to four sentence types, or “moods”:
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All A are B : universal affirmative (A)

Some A are B : particular affirmative (I)

No A are B : universal negative (E)

Some A are not B : particular negative (O)

Although the scholastic labels A, I, E, O (from Latin “AffIrmo” and “nEgO”) have all but

ceased to be mnemonic, they are still widely used, and I will use them here, too. Most

psychological studies on syllogistic reasoning have adopted the traditional definition

according to which there are four classes of syllogisms, called “figures”, which are deter-

mined by the arrangement of terms in the arguments’ premisses; the order of the terms in

the conclusion is always the same:1

Figure 1 Figure 2 Figure 3 Figure 4

B C C B B C C B

A B A B B A B A

A C A C A C A C

Following standard practice, I will sometimes identify syllogisms by their moods and

figures. Thus, “AE4O” stands for the syllogism of the fourth figure whose premisses are

of type A and E, in that order, and whose conclusion is of type O; that is:

All C are B

AE4O: No B are A

Some A are not C

There are 256 syllogistic arguments altogether, 24 of which are valid according to the

canons of traditional syllogistic logic. Of these 24, only 15 are valid in modern predicate

logic. The difference lies in the interpretation of the universal quantifiers “all” and “no”. In

predicate logic, sentences of the form “All A are B” or “No A are B” are vacuously true if

the set of As is empty, and therefore the following inferences are not valid in predicate

logic:

All A are B No A are B

Some A are B Some A are not B

Intuitively, these inferences appear to valid, however, and they are accepted as such by

traditional logicians; therefore, for example, syllogism AE4O (displayed above) is valid in
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traditional logic but not in predicate logic. It is the traditional notion of validity that is

adopted in the psychological literature, and I will do so, too.2 Hence, by default I will use

the term “validity” to denote traditional validity.

Experimental investigations in syllogistic reasoning have explored a number of para-

digms. In most cases, subjects were given two premisses and then asked either to choose

from a list of possible conclusions (e.g. Dickstein, 1978, 1981) or simply to say what, if

anything, followed from the premisses; the latter format has always been used by Johnson-

Laird and his associates. Relatively few researchers (including Rips, 1994) have used

evaluation tasks, asking subjects to decide whether a given argument was valid or not.

By and large, these various paradigms yield the same results, but there are some differ-

ences, too, as we will presently see.

Chater and Oaksford (1999) compared five experimental studies that used the full set of

256 syllogisms: two by Dickstein (1978), two by Johnson-Laird and Steedman (1978), and

one by Johnson-Laird and Bara (1984). Chater and Oaksford found that the results of these

experiments are very similar, and that differences in design appear to have had little effect.

In fact, the weakest correlation they observed was not between Dickstein’s multiple-

choice studies and Johnson-Laird’s production studies, but between the two experiments

by Johnson-Laird and Steedman (1978), which adopted the same paradigm. Chater and

Oaksford computed the average number of times (weighted by sample size) each conclu-

sion was drawn in the five studies just listed; their data are reproduced in Table 1.3 None of

the studies collated by Chater and Oaksford used an evaluation paradigm, but their figures

are very much in agreement with those of Rips (1994), who did. There are just two salient

exceptions: for the valid AAI syllogisms Rips obtained much higher scores than one

should expect on the basis of Chater and Oaksford’s meta-analysis, and the same holds

for the valid AEO and EAO syllogisms. Almost certainly, these discrepancies are due to

the fact that in an evaluation task alternative inferences never have to compete with each

other: the paradigm allows subjects to endorse several conclusions for the same pair of

premisses. By contrast, in the multiple-choice and production paradigms, a subject who

judges AA4A to be valid (which it isn’t) is thereby prevented from endorsing AA4I (which

is valid). Furthermore, production and multiple-choice tasks may be more susceptible to

interference from response factors (see below). So all things considered, the evaluation

paradigm may be more suitable for gauging reasoning capabilities. In practice, however,

this consideration is of minor importance, since all paradigms paint the same general

picture.

Turning to the main trends in the data of Table 1, it is evident that logical validity is a
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major factor in determining performance on syllogistic tasks. To begin with, the most

widely endorsed syllogisms tend to be valid. According to Chater and Oaksford’s data,

valid syllogisms are endorsed 51% of the time on average; invalid syllogisms, 11% of the

time. Seventeen valid syllogisms score above the upper quartile point (P0:75 ¼ 16:5), and

the remaining seven are presumably undervalued because they are in competition with

more popular syllogisms. In Rips’ data the effect of validity is even clearer, for his first 22

syllogisms are all valid. Furthermore, high-frequency errors tend to occur in the vicinity of

valid argument forms. For example, of the four AAA syllogisms, only one is valid (i.e.

AA1A), and it is typically recognized as such; in fact, it is one of the easiest syllogisms.

But the invalid AAA arguments appear to share in this popularity, and are endorsed well

above average. Other clusters of arguments for which this holds are AII, IAI, AEE, EAE,
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Percentage of times each syllogistic conclusion was endorsed according to the meta-analysis by Chater and

Oaksford (1999)a

a All figures have been rounded to the nearest integer; valid conclusions are shaded. Whenever two conclusions

in the same row are valid, only the first one is valid in predicate logic.



AOO, and OAO. The upshot of these observations is that people are rather good at

syllogistic reasoning: not only are valid arguments very often recognized as such, but

when invalid arguments are considered to be valid, they are often identical, modulo figure,

to valid arguments.

Of the four syllogistic sentence types, two license conversion whilst the other two do

not: whereas it follows from “Some A are B” and “No A are B” that “Some B are A” and

“No B are A”, respectively, conversion is illegitimate in the case of “All A are B” and

“Some A are not B”. There are 256 pairs of syllogisms that are identical up to conversion,

which is to say that they can be made to coincide by applying conversion to one of the

premisses. For example, EA1E and EA2E are a conversion pair, because conversion

applied to the first premiss of one yields the other:

No B are C No C are B

EA1E: All A are B EA2E: All A are B

No A are C No A are C

From a logical point of view, one would expect people to perform the same on the

members of a conversion pair, and this expectation is not disappointed: for the set of

pairs kw, cl which are intertranslatable by means of conversion alone, the correlation

between the ws and the cs is quite good (r ¼ 0:93).4 This observation lends additional

credit to the notion that many of the errors in syllogistic reasoning are caused by illicit

conversion. This idea, which goes back to Wilkins (1928) and has since been supported by

many researchers, comes in a variety of incarnations, the most promising of which is that

people have a certain tendency to infer “All B are A” from “All A are B”, and likewise

(though less importantly) “Some B are not A” from “Some A are not B”. Illicit conversion

accounts in large part for the errors made in syllogistic reasoning. In Chater and Oaks-

ford’s data, the 16 most frequently occurring erroneous inferences (endorsed 49–75% of

the time) are all attributable to illicit conversion.

There is also independent evidence that people make conversion errors. In an experi-

mental task with single-premiss arguments, about one-third of the participants will incor-

rectly convert “all” propositions, and for “some not” propositions about two-thirds will

endorse conversion (Newstead & Griggs, 1983); performance on this task correlates with

errors predicted by illicit conversion in syllogistic tasks (Newstead & Griggs, 1983).

Further evidence for illicit conversion is the finding by Dickstein (1981) that more elabo-

rate clarification of a syllogistic task substantially improves performance, but in a selective

way: clarification is significantly less effective with conversion errors. Dickstein suggests

that illicit conversion can be accounted for by a general preference for symmetric rela-
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tions, as demonstrated, for example, by Tsal (1977), and this explanation accords with the

observation made above about the importance of licit conversion in syllogistic reasoning.

It has often been suggested that figure is a major factor affecting the difficulty of

syllogistic arguments. Proponents of this view typically hold that syllogisms in figure 1

are the easiest, those in figure 4 are the hardest, while figures 2 and 3 lie in between (e.g.

Evans, Newstead, & Byrne, 1993). Such claims are not entirely without foundation, but it

is doubtful that they bear much weight. To begin with, we don’t find straightforward

empirical support for the proposition that easier syllogisms tend to be in the lower figures.

Amongst the ten easiest syllogisms in Table 1, figures 2 and 4 are represented twice each,

while figures 1 and 3 are represented three times each, which indicates already that the

figural effect, such as it is, is not a particularly strong one. Furthermore, it is unlikely that a

figural effect could be particularly forceful in view of the fact that syllogisms which are

conversion pairs tend to evoke similar responses; as we have just seen any two syllogisms

that are identical up to conversion tend to be equally difficult, though conversion always

entails a change in figure.

Dickstein (1978) observed that quite a few of the early reports on figural effects were

flawed for various methodological reasons, but chiefly because they confounded potential

figural effects with the effects of other variables, such as validity and illicit conversion (cf.

also Rips, 1994). Dickstein argued that when all these factors are taken into account, only

12 argument forms remain that are suitable for testing the effects of figure. From an

experiment with this restricted sample, he inferred that “figure is a significant determinant

of performance within a specific subset of syllogisms” (p. 80, emphasis added). The tacit

implication is that, when all proper precautions have been taken, it cannot be established

that figure is a major factor in syllogistic reasoning.

Rather more impressive results have been reported by Johnson-Laird and his associates,

who showed that premisses of the form AB-BC encouraged subjects to produce AC

conclusions, while premisses of the form BA-CB inclined them more towards CA conclu-

sions; the other two ways of arranging terms in the premisses caused no clear preferences

(Johnson-Laird & Bara, 1984; Johnson-Laird & Steedman, 1978). Johnson-Laird et al.

attribute these results to two factors: the fact that they adopt a production paradigm, which

forces subjects to formulate their own conclusions, and, relatedly, the fact that subjects are

allowed to draw AC as well CA conclusions, which effectively doubles the standard set of

syllogisms from 256 to 512.5 However, a study by Wetherick and Gilhooly (1990), which

had the same enlarged set of syllogisms but used a multiple-choice test instead of a

production design, failed to replicate Johnson-Laird et al.’s findings, so it seems rather

likely that it is the change of paradigm alone that is crucial.

It has often been suggested that figural effects are linguistic in origin (e.g. Rips, 1994;

Wetherick & Gilhooly, 1990). The pattern found by Johnson-Laird et al. is that there is a

preference for co-opting the subject of one of the premisses to fill the same grammatical

slot in the conclusion. Given that the middle term (i.e. B) cannot figure in the conclusion,

this simple rule predicts a preference for AC conclusions for figure 1 syllogisms, a

preference for CA conclusions for figure 4 syllogisms, and no distinct preferences other-
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wise: in figure 2, the A and C terms both act as subject in one of the premisses, and in

figure 3 neither of them do. The rationale behind the subject rule is obviously pragmatic.

An argument is just a special kind of discourse, and one of the main structural principles

underlying natural discourse is topic continuity: you keep talking about Fred, say, until

other topics become more urgent, and whatever is the topic of conversation will tend to act

as grammatical subject; that is what subjects are for, pragmatically speaking. This line of

thinking explains why figural effects are so much stronger in production experiments than

in other designs: a subject who has to formulate his own conclusion perforce relies more

on his linguistic competence than one who just is to say yes or no, or choose from a list of

alternatives. However, this account also implies that figural effects tell us little about

deductive reasoning per se.

To sum up the main findings of our brief empirical survey, we have seen that validity is

one of the main factors shaping performance in syllogistic tasks, and that a good deal of

the errors in syllogistic reasoning are due to illicit conversion of A (“all”) and O (“some …

not”) propositions. Conversion is central in a more general way, too, since syllogisms that

are conversion pairs strongly tend to elicit equivalent responses. Finally, I considered so-

called “figural effects”, arguing that they are less substantial than they have been claimed

to be, and suggesting that such directionality effects as have been demonstrated are

plausibly viewed as being linguistic not inferential in nature.

Although in its long history psychological research on syllogistic reasoning has accu-

mulated a rich supply of experimental results, it must be noted that in a way its empirical

base is rather narrow. Syllogistic logic covers only a fragment of predicate logic, and

even predicate logic falls short of the plethora of deductive arguments expressible in

natural language. Hence, there are ample opportunities for varying experimental materi-

als, yet these opportunities have barely been explored. As far as I am aware, there have

been no studies on cardinal quantifiers like “five”, “at least six”, “at most seven”, etc., no

studies on the role of negation in syllogistic reasoning, almost no studies on arguments

with multiple quantifiers or relational predicates, and so on. Inevitably, this preoccupa-

tion with a handful of argument schemas demands its toll; for, as will be shown in the

next section, no current theory can deal with certain extensions of the syllogistic

language, some of which are downright trivial.

3. Psychological theories of syllogistic reasoning

Over the years, many theories about syllogistic reasoning have been proposed, the large

majority of which fall into one of three families: logic-based approaches, mental-model

theories, and heuristic theories. The theory to be presented below belongs to the first

family. Existing accounts in the logic-based tradition are mostly based on natural deduc-

tion, which is a species of proof theory developed by Jaśkowski and Gentzen in the 1930s.6

The inference rules for “&” cited in Section 1 are natural-deduction rules. The inference

rules for the quantifiers are in the same format, as the following definitions for the
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universal quantifier illustrate; here “w[a/x]” denotes the result of replacing all free occur-

rences of x in w with the individual constant a:

;xw w[a/x]

w[a/x] ;-exploitation ;xw ;-introduction

The basic idea is straightforward: if ;xw is given one may derive w[a/x], for any individual

constant a. Conversely, if we have w[a/x], and a was chosen arbitrarily, then we may

conclude ;xw .7 Here is an example of a proof that involves both ;-rules and both &-rules:

[1] ;x[Px & Qx] premiss

[2] Pa & Qa ;-exploitation applied to [1]

[3] Pa &-exploitation applied to [2]

[4] Qa &-exploitation applied to [2]

[5] Qa & Pa &-introduction applied to [3] and [4]

[6] ;x[Qx & Px] ;-introduction applied to [5]

In words: since “Px & Qx” holds for all individuals x, the same must be true for an arbitrary

individual a, and as “Pa & Qa” is true, Pa and Qa are true, as well; therefore, “Qa & Pa” is

true, and since a was chosen arbitrarily, this holds for all individuals, and therefore “;x[Qx

& Px]” cannot fail to be true. This proof illustrates how, in order to arrive at a quantified

conclusion, we have to reason about arbitrary individuals. This setup leads to implausible

consequences. Intuitively, one is inclined to say that “;x[Qx & Px]” follows directly from

“;x[Px & Qx]” by transposition of the conjuncts. But in standard systems of natural

deduction, this cannot be proved directly, since the proof has to go via arbitrary indivi-

duals. The problem is quite general, and affects syllogistic arguments, too. Consider, for

example, the archetypical syllogism known since medieval times as “Barbara”:

All B are C

AA1A: All A are B

All A are C

As this is one of the easiest syllogisms, one should expect the conclusion to follow more or

less immediately, but a standard proof will take no less than seven steps. In an attempt to

remedy this type of problem, psychologists working with natural deduction have intro-

duced further rules of inference, which enable the reasoner to make inferential shortcuts.

For example, Rips (1994) postulates, in effect, that Barbara is a rule of inference, which

means, of course, that the argument above becomes provable in one step.
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From a logical point of view, such shortcut rules are simply pointless, since they don’t

enhance the system’s logical power; they merely help to shorten some of the proofs.

From a psychological viewpoint, however, this strategy is more objectionable. On the

one hand, it is blatantly stipulative. Rips’ system, for example, predicts purely by fiat that

AA1A and EA1E are easy, which of course diminishes the theory’s explanatory poten-

tial. On the other hand, the introduction of shortcut rules raises the question of how

deduction skills could ever develop. Consider the quantified version of “mental logic” by

Braine (1998), which has no less than a dozen rules for reasoning with “all”. The system

is highly redundant, and its redundancy has to be of just the right sort: practically any

other collection of shortcut rules would yield different predictions about the relative

difficulty of deductive arguments. How might such a system be acquired? On what

grounds does a child “decide” that AA1A is easier than most other syllogisms, and

therefore merits a special shortcut rule? Or, if mental logic is innate, why did Mother

Nature fit us with this particular set of rules? Such questions are never easy, to be sure,

but theories such as Braine’s and Rips’ add a whole new dimension to what is already a

hairy issue, simply because it is unclear why any cognitive system should be redundant

in one particular way, as opposed to (literally) infinitely many others.

Logic-based approaches to deduction tend to be more powerful than others in that they

generalize more easily beyond syllogistic argument forms. Since natural deduction was

designed as a method of proof for full predicate logic, systems based on this method have

the logical resources for dealing with propositions containing multiple quantifiers and

many-place predicates. Yet, such systems have their limitations, too, especially if we

want to use them as psychological models. To begin with, some quantifiers, such as

“most” and “at least half of” aren’t expressible in standard predicate logic at all. The

reason for this, informally speaking, is that they refer to sets, not individuals. For

example, “At least half of the foresters are vegetarians” states that the set of foresters

who are vegetarians is not smaller than the set of foresters who aren’t. Since predicate

logic only allows for talk about individuals, it is not expressive enough for representing

such sentences. By the same token, any system of inference that deals with quantifiers in

terms of arbitrary individuals cannot handle arguments like the following, if Q is

replaced with “most”, say:

All vegetarians are teetotallers

Q foresters are vegetarians

Q foresters are teetotallers

Intuitively, it doesn’t make much of a difference if Q stands for “all” or “most”, and

experimental evidence confirms this impression (Oaksford & Chater, 2001). However,

even if it is granted that they are adequate for “all” and other universal quantifiers, current

logic-based theories cannot be extended in a straightforward way to deal with “most” and

its kin.

Even if a quantifier is expressible in predicate logic, the representations involved may

be ill-suited for psychological purposes. Consider, for example, how “At least two fores-
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ters are teetotallers” goes over into predicate logic:

’x’y½x – y & foresterðxÞ & teetotallerðxÞ & foresterðyÞ & teetotallerðyÞ�

Since predicate logic doesn’t offer the means for talking about sets, a rather cumbersome

representation is called for: we have to introduce two individual variables and ensure that

their values are distinct and that both stand for a forester as well as a teetotaller. The

complexity of this representation is proportional to the rank of the cardinal that needs to be

represented: “At least n A are B” requires n variables and 0 1 … 1 n 2 1 clauses of the

form x – y. This peculiarity makes predicate logic an unlikely vehicle for reasoning with

cardinal numbers. It entails, for example, that if we replace the Q in the argument above

with “some” or “at least twenty”, the former argument should be much easier than the

latter. This is intuitively false, and the intuition is corroborated by experimental evidence

(see Section 5 below).

I have argued that the mental representations used by logic-based theories of reasoning

are unsatisfactory. They are incapable of capturing even the simplest non-standard quan-

tifiers, the hurdle being that in predicate logic we cannot speak and reason about sets. This

is what renders it flatly impossible to represent proportional quantifiers, such as “most”

and “at least half of”, and it is for the same reason that the predicate-logical way of dealing

with cardinals yields representations that, though logically impeccable, are inadequate

from a psychological point of view. And it is not only logic-based approaches that suffer

from these problems: all extant theories of reasoning run into the same sort of trouble. To

illustrate this, I will briefly discuss Johnson-Laird’s mental-model framework and the

probabilistic treatment of quantification proposed by Chater and Oaksford.

In the theory of mental models developed by Johnson-Laird et al. over the past two

decades, quantified propositions are represented directly in terms of arbitrary individuals.

For example, in the Bucciarelli and Johnson-Laird (1999) version of the theory, processing

the premisses of AA1A (in non-canonical order) results in the suite of mental models

shown in Table 2. Every line in a mental model represents an individual, so for the first

premiss we have two individuals, which have the same properties, A and B. The second

premiss gives rise to a similar model, which merges with the first so as to produce an

integrated representation of the two premisses. This representation is a partial one; further

information may be added, though not all possible extensions are allowed, with square
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Table 2

Representation and integration according to the theory of mental models

Mental model

1st premiss: “All A are B” [a] b

[a] b

2nd premiss: “All B are C” [b] c

[b] c

Integrated model of the two premisses [a] [b] c

[a] [b] c

Extended model, i.e. counterexample against “All C are A” [a] [b] c

[a] [b] c

c



brackets signalling that the property in question is “exhaustively represented”. Once the

argument’s premisses have been encoded, preliminary conclusions can be formulated. In

the case at hand, the integrated model verifies “All A are C” as well as “All C are A”, but as

these conclusions are based on a partial model they are not necessarily valid, and have to

be tested. This is done by trying to refute each of the preliminary conclusions by a

counterexample: an extended model in which the premisses are still true but the conclu-

sion is false. Such a counterexample can be found for “All C are A” (as shown in the last

row of Table 2) but not for “All A are C”, so only the latter survives and is spelled out as

the final conclusion.

One of the things critics of mental-model theory have complained about is that it is not

quite clear what it is, not only because the theory has gone through so many revisions, but

because its key tenets remain somewhat underspecified. Usually, a version of the mental-

model theory comes with one or more computer implementations and a description of

what these programs do, but in general this does not suffice to pin down exactly what

mental models are. To illustrate, while the first model in Table 2 is said to represent the

proposition “All A are B”, we are also told that the model in the third row verifies the

proposition “All C are A”. The former claim suggests that individuals representing the

subject term must be enclosed in square brackets, to encode that its representation is

exhaustive; the latter suggests that this is not necessary. It is only because mental models

lack an explicit semantics that such inconsistencies tend to go unnoticed.

Or consider the sentence “Two A are B”. How can we represent this in a mental model?

One might think that the first model of Table 2 is a plausible candidate, but this cannot be

right, for two reasons at least. First, this model already represents the interpretation of “All

A are B”, which is patently not synonymous with “Two A are B”. Secondly, if it takes two

individuals to represent “two”, then presumably it takes sixty individuals to represent

“sixty”, which gets us back to the same problem we discussed in connection with predi-

cate-logical representations of cardinalities. This is not a coincidence, of course, since

predicate logic and mental-model theory are both individual-based systems, which

forswear reference to entities other than individuals. It is for this reason that the two

accounts get into the same trouble with non-standard quantifiers.8

A rather different way of dealing with quantification is Chater and Oaksford’s prob-

abilistic semantics, which underlies their “probability heuristics model” of syllogistic

reasoning (Chater & Oaksford, 1999; Oaksford & Chater, 2001). According to Chater

and Oaksford, humans are geared towards reasoning with uncertainty; we were designed

by evolution to reason not logically but probabilistically, hence it is quite reasonable to ask

for a probabilistic interpretation of quantified expressions. And for some quantifiers at

least such an interpretation is easy enough to provide. Thus, “All A are B” means,

probabilistically speaking, that PðB j AÞ ¼ 1, i.e. the conditional probability of B given

A equals 1. Similarly, “No A are B” conveys that PðB j AÞ ¼ 0, and “Some A are B” that

PðB j AÞ . 0. As a matter of elementary probability theory, the conditional probabilities

of the premisses of a syllogism will occasionally restrict the conditional probability of the
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conclusion, and whenever this happens, “logical” inferences can be drawn (shudder quotes

are called for here, because the probabilistic account implies that there is nothing logical

about such inferences). For example, if the conditional probability of the conclusion is 1, a

proposition with “all” can be inferred.

One virtue of the probabilistic approach is that it affords a representation of proportional

quantifiers, such as “most”: according to Chater and Oaksford’s definition, “Most A are B”

means that P(B j A) is high though less than 1. In this respect, a probabilistic semantics is

more expressive than the approaches we have considered before, but it is still not expres-

sive enough. In general, propositions involving cardinal quantifiers cannot be translated

into a probabilistic format. For example, if it is given that “Two A are B”, we do not know

what P(B j A) is unless it is also known how many As there are. It might be proposed,

therefore, that “Two A are B” means that PðB j AÞ ¼ 2=cardðAÞ (where “card(A)” stands

for the cardinality of the set of As). Thus, if there are five vegetarians altogether, “Two

vegetarians are liberals” means that there is a 0.4 probability that a given vegetarian is a

liberal. This proposal is up to a number of problems, the most obvious one being that it

suffices for “Two vegetarians are liberals” to be true that there two liberal vegetarians; the

grand total of vegetarians is irrelevant. In brief, going probabilistic is tantamount to

claiming that all quantifiers are proportional, which is unintuitive for some (like

“some”) and demonstrably false for others (like the cardinals).

In the foregoing we have looked at each of the main approaches to deductive reasoning,

and found that they all lack the expressive power for dealing with some quantifiers that

would appear to be quite innocuous. I have focused my attention on cardinal expressions

because they are common, simple, and yet manage to create problems of principle for all

current theories. However, the trouble is not restricted to one or two types of quantifier; it is

symptomatic of a much deeper problem, which is that all approaches to syllogistic reasoning

are ad hoc from the vantage point of language understanding. It is a truism that solving a

syllogistic task begins with an exercise in interpretation: how are the premisses (and, in

some paradigms, the conclusion) to be construed? The range of possible answers to this

question is restricted by what is known about the interpretation of quantified sentences,

obviously, and as quantification happens to be one of the central topics in the field of natural-

language semantics, one might expect semantic theorizing to have had at least some impact

on psychological accounts of syllogistic reasoning. As it turns out, however, any such

expectations will be disappointed: thus far the impact has been practically nil.

And it is not as if the semantic theory hadn’t made any progress on the subject of

quantification. On the contrary, it is widely agreed that the past two decades have

taught us a great deal about this topic, and there is even a broad consensus on what

is the best general framework for dealing with quantified expressions. In the following I

will argue that this framework goes a long way to explain how people reason with

quantifiers.

The plan for the remainder of this paper is as follows. Since my central claim is that a

psychological account of syllogistic reasoning presupposes an adequate theory of inter-

pretation, I start out by discussing the general framework for treating quantification that

semanticists have settled on. Research within this framework has shown that there are

certain logical properties that are especially relevant to natural-language quantifiers, and I

present an inference system that capitalizes on these properties. The resulting model of
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syllogistic reasoning is motivated almost entirely by semantical considerations. It is there-

fore not ad hoc in the way current theories of syllogistic are, nor does it share their

representational shortcomings.

4. Interpreting quantifier expressions

In the field of natural-language semantics, expressions like “all”, “most”, “some”, etc.

are analyzed as denoting relations between sets, or generalized quantifiers.9 Thus, “All A

are B” is taken to mean that the set of As is a subset of the set of Bs, while “No A are B”

asserts that the intersection between the As and the Bs is empty. Formally, if we render “Q

A are B” as “Q(A, B)”, and use
��X ������ to refer to the extension of a term (i.e. the set of all Xs),

“all” and “no” are interpreted as follows:10

allðA; BÞ is true iff Ak k # Bk k

noðA; BÞ is true iff Ak k> Bk k ¼ B

This style of interpretation extends in a natural way to other quantifying expressions. For

example, “Some A are B” means that the intersection between the As and the Bs is non-

empty:

someðA; BÞ is true iff Ak k> Bk k – B

“Three A are B” means that the cardinality of the intersection between the As and the Bs

equals three:

threeðA; BÞ is true iff cardð Ak k> Bk kÞ ¼ 3

Quantifiers like “most”, “many”, and “few” are more challenging, because they are vague

and perhaps ambiguous, to boot. This is just to say, however, that they spell trouble for any

semantic analysis. But the general kind of meaning they convey can be captured in the

present framework without further ado. For example, to a first approximation at least

“Most A are B” means that the majority of the As are B, i.e. that there are more As that

are B than As that aren’t:

mostðA; BÞ is true iff cardð Ak k> Bk kÞ . cardð Ak k2 Bk kÞ

One of the reasons why predicate logic is inadequate as a semantics for natural language is

that it cannot express this kind of meaning, which essentially involves reference to sets.

Viewing quantifiers as relations between sets means that we can try and capture seman-

tic distinctions and similarities amongst quantifying expressions in terms of properties of
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relations. There are various such properties that have proved to be especially relevant to

natural-language quantification, two of which I want to single out here, viz. symmetry and

monotonicity. According to the definitions just given, some quantifiers are symmetric

while others are not. For example, “some”, “no”, and “three” are symmetric; “all” and

“most” are not. Hence, it follows from the definitions above that the following proposi-

tions must be valid:

If some lawyers are crooks then some crooks are lawyers.

If no lawyers are crooks then no crooks are lawyers.

If three lawyers are crooks then three crooks are lawyers.

This prediction is confirmed by speakers’ intuitions. The following, on the other hand,

should not be valid:

If all lawyers are crooks then all crooks are lawyers.

If most lawyers are crooks then most crooks are lawyers.

This prediction, too, appears to be correct. Non-symmetric quantifiers are universal

(English “all”, “every”, and “each”) or proportional, like “most” and “half of the”. The

distinction between symmetric and non-symmetric quantifiers has been shown to manifest

itself in several ways, the best-known of which is that in many languages, including

English, existential there-sentences only admit symmetric quantifiers:

8>> 9>>some>>>>< >>>>=no

There are
< =

three lawyers on the beach.

<
>>>>

=
>>>>pall>>: >>;pmost

The distinction between symmetric and non-symmetric quantifiers is also implicated in

the interpretation of donkey sentences,11 for example, and it plays an important role in the

acquisition of quantifying expressions. It is well-known that young children tend to have

difficulties interpreting propositions like “All the boys are kissing a girl”, as uttered of a

scene with, say, three boys kissing one girl each plus one further girl who isn’t kissed by

anyone. Children are prone to believe that the sentence is false in such a situation, but they

never make analogous mistakes with symmetric quantifiers. Furthermore, it has been

shown that previous exposure to sentences with symmetric quantifiers has an adverse

effect on children’s performance with non-symmetric quantifiers, though not vice

versa.12 It appears, therefore, that symmetry is a key element in the acquisition of quanti-

fication, too.

Another property (or rather, family of properties) that looms large in the semantic
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literature is monotonicity. Like symmetry, this notion is not restricted to quantifiers, and I

will introduce it with the help of a non-quantified example:

Fred’s tie is navy blue.

Fred’s tie is blue.

Since “navy blue” entails “blue” (the latter predicate applies to everything of which the

former holds), the first sentence entails the second. The position occupied by “navy blue” in

the first sentence is upward entailing (or monotone increasing), which is to say that truth will

be preserved if “navy blue” is replaced with a term it entails. Similarly, it follows from

“Fred’s tie isn’t blue” that “Fred’s tie isn’t navy blue”. The position occupied by “blue” in the

first sentence is downward entailing (or monotone decreasing), which is to say that truth will

be preserved if “blue” is replaced with a term it is entailed by (negation reverses mono-

tonicity). Monotonicity is a very broad concept: in principle, any linguistic position may be

upward or downward entailing, or neither (non-monotone). In particular, each quantifier has

its own monotonicity profile. Consider, for example, the following proposition:

If all pachyderms are navy blue, then:

(a) all pachyderms are blue, and

(b) all elephants are navy blue.

Since everything that is navy blue is blue, (a) implies that the second argument position of

“all” is upward entailing; and as “elephant” entails “pachyderm”, (b) implies that the first

argument position is downward entailing. Using a plus sign for upward entailing and a minus

sign for downward entailing positions, we can summarize the monotonicity profile of “all”

thus: all(A2, B1). Table 3 gives the monotonicity profiles of the syllogistic moods and two

sentence schemas with cardinal quantifiers.

Note that “exactly three” is non-monotone in both of its argument positions. The follow-

ing propositions, neither of which is valid, illustrate this for the first argument position:

If exactly three pachyderms are blue, then exactly three elephants are blue.

If exactly three elephants are blue, then exactly three pachyderms are blue.

The following proposition, on the other hand, is valid:

If three elephants are blue, then some elephants are blue.

This is because the position occupied by the quantifier “three” itself is upward entailing, and

“three” entails “some”; it follows from the definitions given above that, for any pair of

predicates A, B, if “three(A, B)” is true, then “some(A, B)” is true, as well. More generally, if

we have a sentence of the form “Q(A, B)”, then the position occupied by Q is upward

entailing; that is to say, this property holds irrespective of the quantified expression repla-

cing Q.

It was already mentioned in passing that negative expressions reverse monotonicity:

upward becomes downward, and vice versa. For example, if “all(A2, B1)” occurs within

the scope of a negation operator, we get “not all(A1, B2)”, as witness the following, which
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are both valid:

If not all elephants are blue, then not all pachyderms are blue.

If not all elephants are blue, then not all elephants are navy blue.

There is one syllogistic mood which involves explicit negation, namely “some(A, not

B)”, whose monotonicity profile is: “some(A1, not(B2)1)”. Note that the position within

the scope of the negation operator is downward entailing, while the argument position as

such, now occupied by a negated predicate, remains upward entailing.

Monotonicity has been shown to be involved in various semantic phenomena, including

donkey sentences, the semantics of temporal connectives, co-ordination, and polarity; here

I will briefly illustrate the latter two. Compare the following propositions, both of which

are valid:

If at least five lawyers sang and danced, then at least five lawyers sang and at least five

lawyers danced.

If at most five lawyers sang or danced, then at most five lawyers sang and at most five

lawyers danced.

More generally, for some Qs, we may infer from Q(A, B and C) that Q(A, B) and Q(A, C),

while for other Qs, the same conclusion may be drawn from Q(A, B or C). The former

pattern holds for quantifiers that are upward entailing in their second argument position,

and the latter holds for quantifiers that are downward entailing in that position. Since the

predicate “sing and dance” entails “sing” as well as “dance”, each of which entails “sing or

dance”, and “at least five” and “at most five” are, respectively, upward and downward

entailing in their second argument, the facts observed above follow from the monotonicity

properties of the quantifiers “at least five” and “at most five”.

All languages have negative polarity items, which are so-called because they typically

occur within the scope of a negative expression, and are banned from positive environ-

ments. English negative polarity items are “any” and “ever”, for example:

B. Geurts / Cognition 86 (2003) 223–251 239

Table 3

Monotonicity profiles of some quantifiers, with diagnostic tests

Validity test for A-position Validity test for B-position

all(A2, B1) If all pachyderms are pink,

then all elephants are pink.

If all elephants are navy blue,

then all elephants are blue.

some(A1, B1) If some elephants are pink,

then some pachyderms are pink.

If some elephants are navy blue,

then some elephants are blue.

some(A1, not B2) If some elephants are not pink,

then some pachyderms are not pink.

If some elephants are not blue,

then some elephants are not navy blue.

no(A2, B2) If no pachyderms are pink,

then no elephants are pink.

If no elephants are blue,

then no elephants are navy blue.

at-least-three(A1, B1) If at least three elephants are pink,

then at least three pachyderms are pink.

If at least three elephants are navy blue,

then at least three elephants are blue.

at-most-three(A2, B2) If at most three pachyderms are pink,

then at most three elephants are pink.

If at most three elephants are blue, then

at most three elephants are navy blue.



Wilma

( )
phas

any luck.

( )
doesn’t have( )

pSomeone
has any luck.

( )
No one

On closer inspection, it turns out that negative polarity items do not necessarily require a

negative environment, though there certainly are constraints on where they may occur, as

witness:

If Wilma has any luck, she will pass the exam.

*If Wilma passes the exam, she must have any luck.

Everyone who has any luck will pass the exam.

*Everyone who passes the exam must have any luck.

The generalization is that negative polarity items may only occur in downward entailing

positions. In effect, a negative polarity item serves to signal that the environment in which

it occurs is downward entailing, which goes to show that monotonicity is of some impor-

tance to languages and their speakers (Ladusaw, 1979, 1996).

The purpose of the foregoing survey was to explain why semanticists count symmetry

and monotonicity among the most important properties of natural-language quantifiers.

Assuming that they are right about this, it is not unreasonable to hypothesize that these

properties play a role in reasoning with quantifiers, as well. I will now try to show that this

hypothesis is a fertile one.

5. A monotonicity-based model of reasoning with quantifiers

In this section I present a very simple logic which builds on the observations made in the

foregoing. In this logic all valid classical syllogisms are provable, but it goes far beyond

traditional syllogistic logic in that it renders many other arguments valid, as well. The logic

has three rules of inference, which follow directly from the interpretation of the quantifiers

and negation. The logic’s workhorse is monotonicity, which turns out to be implicated in

every valid syllogistic argument. Once this logic is in place, it is not very difficult to produce

a processing model that accounts for the data reviewed in Section 2.13,14
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be argued that the concept is implicit in the traditional dictum de omni and the notion of so-called distributed

occurrence of terms. The most thorough discussion of the role monotonicity plays in syllogistic inference is by

Sánchez Valencia (1991).
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rules and representations it employs. I have nothing new to say about reasoning errors, and nothing at all about

reasoning strategies. Concerning the latter point, I consider it quite likely that people employ different types of

reasoning strategies, which may involve different types of representation (as, for example, Ford, 1995 has

argued), but in this paper I confine my attention to one particular type.



To begin with, we need a formal syntax for our representation language, which is not too

hard to provide, because the syntax of syllogistic logic is so simple. Matters are compli-

cated slightly because we need a representation in which upward and downward entailing

positions are made explicit, but this, too, is fairly straightforward:15

Vocabulary:
X basic terms: A, B, C, …
X quantifiers: all, some, no
X a special two-place predicate: )
X diacritical signs and brackets: 1, 2, ), (

Syntax:
X If a is a basic term, then a1 and (not a2)1 are positive terms and a2 and (not a1)2

are negative terms.
X If a is a negative term and b is a positive term, then all1(a, b) is a sentence.
X If a and b are positive terms, then some1(a, b) is a sentence.
X If a and b are negative terms, then no1(a, b) is a sentence.
X If a and b are both either terms or quantifiers, then a) b is a sentence.

These rules generate the kind of strings we have been using already, like “all1(A2, B1)”,

“some1(A1, (not B2)1)”, and so forth. Since the position of negation is not restricted to

the second term, this syntax also produces strings like “all1((not A1)2, B1)”, for which

there is no use in a syllogistic logic, but which will not be in the way, either. Other strings

that aren’t part of traditional logic, but are essential to ours, are of the form “a) b”,

where a and b are either terms or quantifiers; this proposition may be read as “a implies

b”. If A and B are terms, then “A ) B” means that all As are Bs. Hence, “A ) B” and

“all(A, B)” are synonymous, and will accordingly be treated as notational variants. Impli-

cation is not restricted to terms; quantifiers may imply each other, too. For example, in

traditional syllogistic logic (though not in predicate logic) “all” implies “some”, which is

rendered in the present notation as “all ) some”.

These syntactic rules define the official language of our logic. In practice, however, we

will drop the brackets enclosing negated terms, as well as all diacritics save for the ones

required by the occasion. Thus, whenever a diacritical plus or minus appears it flags a

position that is actually used in a proof.

Our chief rule of inference is the following:

a) b b) a

… a1 … … a2 …

… b1 … … b2 … mon
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In words: any expression a occurring in an upward entailing position may be replaced with

any expression b that is implied by a, and any expression a occurring in a downward

entailing position may be replaced with any expression b that implies a.

Our second rule of inference is based on symmetry, and its application is therefore

restricted to symmetric quantifiers; it is the conversion rule used already by Aristotle:

Q(A, B)

Q(B, A) conv (Q ¼ “some” or “no”)

Without further provisions, mon and conv suffice to prove 11 syllogistic arguments valid

in predicate logic. In all cases the conclusion is derivable in one or two steps, using either

mon alone or mon and conv. The following proof of AE4E is as complex as it gets:

[1] all(C, B) premiss

[2] no(B2, A) premiss

[3] no(C, A) mon applied to [1] and [2]

[4] no(A, C) conv applied to [3]

Here mon applies to an argument, but the rule is not restricted to any particular

category of expression, and may affect negated terms, too, as in the following proof

of AO2O:

[1] all(C, B) premiss

[2] some(A, not B2) premiss

[3] some(A, not C) mon applied to [1] and [2]

The remaining valid syllogisms cannot be obtained with mon and conv alone. This is

partly due to the fact that mon is as yet restricted in its application to terms, but we also

need one further rule:

no(A, B)

all(A, not B) no/all-not

Like the conversion rule, this one follows directly from the meanings of the quantifiers

involved. As it turns out, the effect of the no/all-not rule will always be to feed into the

mon rule. With our new rule, we can prove all 15 syllogisms that are valid in standard

predicate logic. The following proof, of syllogism EI3O, uses all rules introduced thus

far:
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[1] no(B, C) premiss

[2] some(B, A) premiss

[3] some(A, B1) conv applied to [2]

[4] all(B, not C) no/all-not applied to [2]

[5] some(A, not C) mon applied to [3] and [4]

This is a relatively long proof, but then the syllogism is not an easy one.

The remaining syllogisms are not valid in standard predicate logic, because they require

the presupposition that “all” and “no” range over non-empty domains of quantification.

Slightly more accurately: traditional logic has it that “all(A, B)” and “no(A, B)” entail that

there are As. In terms of generalized quantifier theory, this is to say that these quantifiers

are construed as follows:

allðA; BÞ is true iff Ak k – B and Ak k # Bk k

noðA; BÞ is true iff Ak k – B and Ak k> Bk k ¼ B

There is a simple way of capturing this presupposition in our system, namely by adding the

following axiom, which just says that “all” implies “some”:

all ) some all/some

Again, this addition is licensed directly by the interpretation of the quantifiers involved (as

construed in traditional logic), and as with the no/all-not rule, the main function of all/

some will be to feed into the mon rule. With this new axiom, “some(A, B)” can be derived

from “all(A, B)”, courtesy of the mon rule, and “some(A, not B)” becomes derivable from

“no(A, B)”, because no/all-not gives us “all(A, not B)”, from which “some(A, not B)”

follows through mon. The following proof of syllogism EA2O illustrates the use of all/

some:

[1] no(C, B2) premiss

[2] all(A, B) premiss

[3] no(C, A) mon applied to [1] and [2]

[4] no(A, C) conv applied to [3]

[5] all1(A, not C) no/all-not applied to [4]

[6] some(A, not C) mon applied to [5] and all/some

Thus, all valid arguments can be accounted for with a handful of inference rules that

follow directly from the semantics of the logical vocabulary of syllogistic logic: “all”,

“some”, “no”, and “not”.

What remains to be shown is how this logic can be embedded in a processing model. In

principle, there are many ways of doing this, but for current purposes it will suffice to show

that even a crude processing model can produce reasonable predictions. Let us assume,

therefore, that inference rules are applied in a breadth-first fashion until the right sort of

conclusion is found or no new inferences can be made. What the “right sort of conclusion”
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is depends on the task. In an evaluation paradigm, it is the conclusion specified by the

experimenter, or its negation; in a multiple-choice paradigm, any one of the given conclu-

sions is of the right sort; and in a production paradigm, any sentence of the syllogistic

language is of the right sort.16 Since inference rules are applied breadth-first, the system is

guaranteed to find a minimal proof that isn’t longer than any other proof (if a proof exists,

that is). In many cases, there will be more than one minimal proof of a valid syllogism, but

these will only differ in the order in which inference steps are made: the rules will be the

same, and so will the number of inferences.17

As is common in logic-based accounts, I take it that the complexity of a syllogism is

determined chiefly by the number of inference steps needed to get from the premisses to

the conclusion. In the present case, this is to say that the length of any minimal proof is the

main predictor. But there is another factor, as well, viz. grammatical structure. It is a well-

established fact that more syntactic structure makes a sentence harder to process, and as

deduction tasks always involve sentence processing, it doesn’t come as a surprise that

grammatical complexity plays a role in reasoning, too. Grammatically speaking, three

quarters of all syllogistic propositions have the same structure: “Q A are B”. However, O-

propositions have the form “Some A are not B”, and should therefore be harder to process

than propositions in the other moods.

Putting these considerations together, I propose the following model. Our abstract

reasoner starts out with a budget of 100 units, which are used to pay for inferences and

grammatical complexity, according to the following rules:18

† For every use of mon, subtract 20 units.

† For every use of no/all-not, subtract 10 units.

† If a proof contains an O-proposition, subtract 10 units.

For reasons discussed in Section 2, I assume that conv is for free. That the no/all-not

rule is cheaper than mon is plausible, too, because the latter rule combines information

from two propositions, whilst the former merely maps one proposition onto another. Table

4 shows the predicted difficulty of all valid syllogisms alongside the scores of Chater and

Oaksford’s meta-study (cf. Table 1). The correlation between the two is good (r ¼ 0:93).

We now have a monotonicity-based model which accounts quite well for people’s

performance on valid syllogisms, which was one of our main objectives, because validity

is the major factor in syllogistic reasoning, as I argued in Section 2. In the same section, we

saw that many errors in syllogistic reasoning can be put down to illicit conversion of

propositions with “all” and “some … not”. This is something that is easily incorporated in

our model. We only need to extend conv so that it applies not only to propositions with
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16 More sophisticated models can be obtained by refining the notion of “right sort of conclusion”, which is

somewhat simplistic as it stands. Such refinements should account for the fact that we prefer to draw conclusions

that are non-trivial and relevant to our current purposes – which may be rather a tall order.
17 As the number of valid syllogisms is quite small, this can easily be proved by enumeration of alternatives.
18 Of course, this talk of “reasoning budgets” is merely a picturesque alternative to the common procedure of

assigning numerical weights to inference rules. It must be admitted that it is not entirely clear what such weights

stand for. The basic idea surely is that weights represent processing effort, but this notion is inappropriate if we

allow for illicit inference rules. I will not attempt to sort out this matter here.



“some” and “no” but also to propositions with “all” or “some … not”. However, we still

want to differentiate between licit and illicit conversion, because the latter is less common

than the former. Therefore, we assume that, unlike its legal counterpart, illicit conversion

is not for free: it costs 20 units. Even with illicit conversion, most syllogisms remain

unprovable, and we simply assume that an unprovable syllogism sets the reasoner back by

80 units, which is the price of the most difficult argument that does have a proof (with

illicit conversion).19 This model makes quite reasonable predictions for the complete set of

syllogisms, with r ¼ 0:83, and if we set aside the syllogisms which are probably under-

valued by Chater and Oaksford’s figures because, in the experiments analyzed by Chater

and Oaksford, they had to compete with other syllogisms, then r ¼ 0:88.

The main virtue that I claim for my account is that it extends in a natural way beyond the

confines of traditional syllogistic logic. For example, it is a trivial exercise to incorporate

cardinal quantifiers, like “at least n”. From a semantical point of view, “at least n” is of the

same type as “some”: both are symmetric quantifiers that are upward entailing in both of

their argument positions. The proposed account predicts, therefore, that arguments with

“at least n” will be equally complex as corresponding arguments with “some”, regardless

the size of n.

Ceteris paribus, I would predict that “at most n” affects the complexity of an argument

in the same measure as “at least n” does, for the following reason. The main difference

between “some” and “no” is that whereas the former is upward entailing the latter is

downward entailing in both of its argument positions. Therefore, whenever we have

commensurable arguments with “some” and “no”, they should be equally complex.

This prediction is borne out by the data (see the Chater and Oaksford (1999) figures

for AEE/EAE and AII/IAI arguments). Moreover, “at most n” is of the same semantic

type as “no”: they are both symmetric quantifiers that are downward entailing in both

argument positions. Hence, by transitivity, “at least n”, and “at most n” should be equally

difficult.

However, all things are not equal: considerations extraneous to the proposed model
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Table 4

Predicted difficulty of valid syllogisms according to the model described in the text, compared with Chater and

Oaksford’s scores (in parentheses)

AA1A 80 (90) OA3O 70 (69) EA1O 40 (3)

EA1E 80 (87) AO2O 70 (67) EA2O 40 (3)

EA2E 80 (89) EI1O 60 (66) EA3O 40 (22)

AE2E 80 (88) EI2O 60 (52) EA4O 40 (8)

AE4E 80 (87) EI3O 60 (48) AE2O 40 (1)

IA3I 80 (85) EI4O 60 (27) AE4O 40 (2)

IA4I 80 (91) AA1I 60 (5)

AI1I 80 (92) AA3I 60 (29)

AI3I 80 (89) AA4I 60 (16)

19 This is admittedly stipulative, but it is not entirely arbitrary because it means, in the present model, that the

reasoning system begins to falter after four or five inference steps – which seems quite reasonable to me. Still, this

is a matter that calls for a more refined treatment.



suggest that “at most n” may be more difficult than “at least n”. There is a wealth of

linguistic and psychological evidence which shows that in pairs like “tall–short”,

“many–few”, “happy–unhappy”, etc., the first member, which is in a sense the positive

one, enjoys a privileged status (see Horn, 1989 for a survey). Linguistically, the negative

form is marked, which means that it does not figure in all environments that admit its

positive counterpart. For example, one normally would ask, “How tall is Fred?”, not

“How short is he?”. Psychologically, negative expressions take longer to process, cause

more errors, and are harder to retain than positive ones. Now, it seems likely that “at

least n–at most n” will follow the pattern of “tall–short”, “many–few”, and “happy–

unhappy”, and if it does, arguments with “at most n” will be more difficult than argu-

ments with “at least n”, presumably because the representation of “at most n” contains a

negative element: “At most n A are B” is represented as “Not more than n A are B”. In

terms of our semantical framework, this means that we must not interpret “at most n”

directly:

at-most-nðA; BÞ is true iff cardð A > Bk kÞ # n

Instead, “at most n” is to interpreted as the negation of “more than n”:

more-than-nðA; BÞ is true iff cardð A > Bk kÞ . n

From a logical point of view, these interpretations are equivalent (“at-most-n(A, B)” and

“not more-than-n(A, B)” always have the same truth value), but linguistically as well as

psychologically they are different.

To summarize: I predict that “at least n” is of the same complexity level as “some”, for

any n, whereas “at most n” is more difficult. In order to test these predictions, I conducted

an experiment in which subjects were presented with syllogistic arguments involving (the

Dutch equivalents of) “some”, “at least n”, and “at most n”, where n was an integer

between 20 and 30 (the variation was used as a precaution against interference between

tasks). The terms of each syllogism were randomly selected from a small collection of

nouns like “forester”, “communist”, “poet”, and so on. For each quantifier Q, there were

four arguments to be assessed:

Figure 1 Figure 2 Figure 3 Figure 4

All B are C All C are B All B are C All C are B

Q A are B Q A are B Q B are A Q B are A

Q A are C Q A are C Q A are C Q A are C

Note that the arguments in figures 1 and 3 are valid if the B-positions in “Q A are B” and

“Q B are A” are upward entailing, and invalid otherwise; similarly, the arguments in

figures 2 and 4 are valid if the B-positions in “Q A are B” and “Q B are A” are downward

entailing, and invalid otherwise. With three quantifiers and four argument schemata, there

were 12 syllogistic arguments altogether, which were alternated with one-premiss argu-

ments like the following:
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At least 24 communists own a blue bicycle.

At least 24 communists own a bicycle.

Note that this is a monotonicity argument, too, though it should be easier than the corre-

sponding figure 1 syllogism, because it is shorter.

Since I had to make do without the usual experimental facilities, I cajoled 23 friends and

relations into taking the test. All participants were native speakers of Dutch with an

academic degree in psychology or linguistics, but no previous exposure to logic.

The results of the experiment are presented in Table 5.20 To analyze these data, a

repeated measures ANOVA was conducted with three within-subject factors: quantifier

(“at least”, “at most”, “some”), argument length (one or two premisses), and validity (valid

or invalid). This yielded main effects for quantifier (Fð2; 44Þ ¼ 14:533, P , 0:001) and

argument length (Fð1; 22Þ ¼ 12:517, P , 0:002), but not for validity. There were inter-

actions between quantifier and argument length (Fð2; 44Þ ¼ 6:466, P , 0:009) and quan-

tifier and validity (Fð2; 44Þ ¼ 4:926, P , 0:018). Further analysis of these two interactive

effects tied them to arguments featuring “at most”; in both cases there were significant

differences between arguments with “at most” and “some” (quantifier/argument length:

P , 0:010; quantifier/validity: P , 0:033) and between arguments with “at most” and “at

least” (quantifier/argument length: P , 0:017; quantifier/validity: P , 0:016). There were

no significant differences between “at least” and “some”. In order to determine if any of

the differences between arguments with the same quantifier were significant, t-tests were

conducted with quantifier and argument length and quantifier and validity as factors. These

tests, too, attained significance only for arguments with “at most”: t ¼ 3:792 (P , 0:001,

two-tailed) and t ¼ 22:577 (P , 0:017, two-tailed), respectively.

These results are consistent with our main predictions: that there is no relevant differ-

ence between “some” and “at least”, and that arguments with “at most” are more difficult.

But at the same time they cloud the picture somewhat, because it turns out that the strictly

additive measure of complexity that underlies our model is not quite adequate. It is not as

if any argument with “at most” is harder than parallel arguments with “some” or “at least”;

rather, it is valid and/or two-premiss arguments with “at most” that are more difficult than

others. This, however, is a concern not only for the present proposal but for all current

theories of deductive reasoning.
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Table 5

Percentage of correct responses in the experiment described in the text, with standard deviations in parentheses

1 premiss 2 premisses Valid Invalid All

At least 97 (9) 92 (14) 96 (10) 93 (14) 95 (8)

Some 95 (11) 90 (12) 93 (14) 91 (14) 92 (8)

At most 89 (15) 67 (24) 70 (21) 87 (22) 78 (15)

20 I am indebted to Frans van der Slik for carrying out the analyses reported in the following and helping me

interpret the results.



Of the two interactions found in this study, the one between quantifier type and validity

is the most troubling, in my view. Earlier on in this paper I argued that valid arguments

tend to be easier than invalid ones (see Section 2), and now we find that some valid

arguments are harder than their invalid counterparts. This need not be a contradiction,

of course, but I do believe that there is a serious problem lurking here. It is that thus far we

lack a good understanding of why people reject some arguments as “not valid” or maintain

that “nothing follows” from a given set of premisses. If someone says that a conclusion w

does not follow, it may be either because he has a proof of “not w” or because he doesn’t

know how to prove w. These are quite different things, obviously, but the evaluation task

used in our experiment doesn’t distinguish between the two. Other experimental techni-

ques are more discriminating in this respect, but even the paradigms which allow subjects

to say that “nothing follows” are relatively crude instruments because there is likely to be

more than one possible reason why someone should think that “nothing follows”; for

example, he may judge that a given conclusion, though correct, is pointless or odd.21 In

brief, this is a topic that calls for more, and better, experimentation.

6. Concluding remarks

One popular way of characterizing logical inference is that a conclusion w follows

logically from a set of premisses c1 … cn if the meanings of w and c1 … cn alone

guarantee that w is true if c1 … cn are. It is not the facts but the meanings of its component

propositions that render an argument valid or invalid. Hence, in order to understand logical

inference we must understand how arguments are interpreted: no inference without inter-

pretation. I have endeavoured to demonstrate that this slogan applies with a vengeance to

syllogistic reasoning.

The main virtues of the model I have presented are the following. First and most

importantly, my account is based on a system of inference that is independently motivated

by the meaning of its logical vocabulary: “all”, “no”, “some”, and “not”. Secondly and

relatedly, this system can be extended in a straightforward and principled way not only to

the non-classical quantifiers but across the board. Thirdly, the model predicts a complexity
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21 A case in point is the well-known fact that the seemingly trivial step from “It is raining” to “It is raining or

snowing” is actually quite hard to take, though it doesn’t seem right to say that the inference is especially

complex; it is just odd that someone should want to draw this conclusion. Some researchers have, implicitly

or explicitly, rejected this diagnosis. Thus, Braine, Reiser, and Rumain (1984) set up their “mental logic” in such a

way that it is very hard to derive “w or c” from w alone. However, this also makes the following argument

virtually impossible to prove:

w

If w or c, then x

x

Subjects typically find it very easy to see that this is valid, and therefore Braine et al. have no choice but to

stipulate that this is a valid pattern of inference. I have criticized such manoeuvres in Section 3, and argued that

they should be avoided at all costs. There is quite a bit more to say about this matter, but I will not say it here.



ranking that fits well with the experimental data. Fourthly, the current proposal is simpler

than any other theory that covers the same ground, including “fast and frugal” heuristic

models of syllogistic reasoning like Chater and Oaksford’s.

Methodological considerations aside, the key element in my proposal, which distin-

guishes it from all previous accounts in the psychological literature, is that it drops the

assumption that syllogistic reasoning is always in terms of individuals. Generalized-quan-

tifier theory leads us to expect that reasoning with quantifiers is done in terms of sets

instead, and I have tried to show that a processing model based on this assumption can be

quite successful.

Logic-based approaches to deduction have been criticized on a number of counts. There

is a popular view that ordinary folk are bad at logical reasoning, and that, consequently, it

is a priori unlikely that they employ anything like a mental logic. A related argument,

advanced by Chater and Oaksford (Chater & Oaksford, 1999; Oaksford & Chater, 2001),

among others, is that everyday reasoning is not logical, so that whatever it is people do

when they solve deduction tasks cannot be logic. Arguments along these lines invariably

rely on carefully selected evidence. To a large extent, the rumour that people aren’t good at

logic is based on experimental data on conditional reasoning. In particular, it has been

demonstrated again and again that subjects fail in large numbers on certain versions of the

Wason task. But then conditionals rank high among the more controversial topics in

semantics and the philosophy of language; at present, it is simply unclear what their

logic is, and therefore we lack a sound normative theory against which subjects’ perfor-

mance can be assessed. Moreover, even if it had been established that performance on

some conditional-reasoning tasks is poor from a logical point of view, there are scores of

logical inferences that people are quite good at, like the following, for example:

The butler and the chauffeur have an alibi.

The chauffeur has an alibi.

I take it to be self-evident that very few people will have problems with this, and the

experimental work of Braine, Reiser, and Rumain (1984) proves, if proof is required, that

there are lots of arguments like this. Such bread-and-butter inferences tend to pass unno-

ticed, but we are making them all the time, and it would be far-fetched to deny that they are

logical inferences, pure and simple.

Another objection against logic-based accounts of reasoning has been made by evolu-

tionary psychologists (e.g. Cosmides, 1989; Cosmides & Tooby, 1992; Gigerenzer & Hug,

1992). Logic-based theories, so the criticism goes, assume that we have a mental logic

which is a domain-independent instrument for reasoning about anything that happens to

arouse our interest. But how did we acquire this general-purpose tool? There is precious

little evidence that our parents teach us how to reason, nor is it clear how evolution could

have hit upon such a device. It seems rather likely that Mother Nature equipped us with

specialized modules for reasoning about physical objects, social relationships, snakes and

spiders, and so forth, but it is utterly mysterious how a full-blown logical faculty could be

the outcome of natural selection. I sympathize with this line of argument, and have used it

myself to criticize previous logic-based theories of reasoning (Section 3). However, this
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criticism takes for granted a view on mental logic that I believe is wrong. Though it may be

that some elementary notions of logic are innate, mental logic must not be conceived of as

an autonomous module of the mind. As I have said a number of times already, and as I

have illustrated in the foregoing with syllogistic reasoning, there has to be an intimate

connection between the meaning of an expression and valid arguments which make

essential use of that expression. Mental logic is largely a concomitant of our linguistic

prowess, and though it is still a matter of controversy where that came from, nobody will

doubt that we have it.
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