Free choice and the proper treatment of Q-implicatures

Preliminary problems

George: What did you have for lunch?

Mildred: I had some of the strawberries.

- \sim [1] Mildred didn't eat all the strawberries.
- \sim [2] Mildred had some strawberries and nothing else.

In order to account for [2], we would have to assume the following alternatives:

I had some of the strawberries and a pear. I had some of the strawberries and a banana. I had some of the strawberries and some porridge. I had some of the strawberries, a banana, and a biscuit. I had some of the strawberries, a banana, and two biscuits. I had some of the strawberries, a banana, and three biscuits. *and so on and on ...*

Bart Geurts Free choic

An intention-based solution

George: What did you have for lunch?

Mildred: I had some of the strawberries.

 \sim Mildred had some strawberries and nothing else.

Q: If Mildred believed (knew) that her lunch comprised more than strawberries, would she have said so?

If George's answer to this question is "yes", he will derive a Q-implicature.

Bart Geurts Free choice

The argument

- According to the Standard Recipe, the derivation of Q-implicatures is driven by alternatives, i.e. sentences the speaker could have used but didn't.
- This works fine for scalar implicatures, but it doesn't generalise very smoothly.
- In particular, it doesn't work at all for free choice inferences.
- Apart from this, the Standard Recipe is not really in the spirit of Grice: it is "too linguistic".
- Instead of an alternative-based approach, we need one that is intention-based.

Free choice inferences

Permission sentences:

- (1) You can have fruit or ice cream.
 - \rightsquigarrow You can have fruit.
 - \rightsquigarrow You can have ice cream.

$Deontic \ statements:$

- (2) In this hotel, you can bring your dog or cat. \sim In this hotel, you can bring your dog.
 - \sim In this hotel, you can bring your cat.

Epistemic modals:

- (3) George may be American or Canadian. \sim He may be American.
 - \sim He may be Canadian.

Bart Geurts Free cl

Free choice inferences

Ability modals:

- (4) Betty can balance a fishing rod on her nose or chin.
 - \rightsquigarrow She can balance a fishing rod on her nose.
 - \rightsquigarrow She can balance a fishing rod on her chin.

Ordinary quantifiers:

- (5) Everybody ordered pizza or pasta.

 - \sim Some people ordered pasta.

No easy way out

Contrary to what one might think at first, free choice is not simply a matter of interpreting "or" as "and":

- (6) You can have fruit or cheese.
 - \neq You can have fruit and cheese.
- (7) George may be American or Canadian.
 - \neq George may be American and Canadian.
- (8) Everybody ordered pizza or pasta. \neq Everybody ordered pizza and pasta.

Bart Geurts Free cho

Free choice inferences are cancellable

- (10) In this hotel, you can bring your dog or cat—I forget which.
 - $\not\sim$ In this hotel, you can bring your dog.
- (11) a. You can have fruit or ice cream, but I'm not going to tell you which.
 - b. George may be American or Canadian, but I'm not allowed to say which it is.
 - c. Everybody ordered pizza or pasta—I forget which.

Problems for the Standard Recipe

- (12) George is American or Canadian.
 - \sim He may be American.
 - \sim He may be Canadian.
- (13) George may be American or Canadian.
 - \sim He may be American.
 - \rightsquigarrow He may be Canadian.

Oddly enough, the Standard Recipe has no problems with (12), but fails rather dramatically with (13).

The problem

- (16) George may be American or Canadian.
- Rather than saying (16), S could have said: (16*) George may be American.
 Why didn't she do so?
- 2 The most likely explanation is that S doesn't believe that (16^*) is true: $\neg \mathbf{Bel}_S(16^*)$.
- **B** Hence, according to S, George cannot be American.

Ouch!

Bart Geurts Free ch

Preliminary note

In both (14) and (15), the (a) sentences are logically weaker than the (b) and (c) sentences:

- (14) George is American or Canadian.
 - a. He is American.
 - b. He is Canadian.
- (15) George may be American or Canadian.
 - a. He may be American.
 - b. He may be Canadian.
- Because: $-\varphi$ entails " φ or ψ " and
 - if φ is possible, anything that is entailed by φ is possible, as well.

Scalar implicatures

- (17) Many of the nurses were drunk.
 - **1** S has to be in one of the following belief states:

Bart Geurts

- i_1 : **Bel**_S(all nurses were drunk)
- i_2 : **Bel**_S¬(all nurses were drunk)
- i_3 : neither i_1 nor i_2
- **2** If i_1 held, S would have said "All the nurses were drunk", but since she didn't, this possibility can be discarded (weak implicature).
- **3** If the Competence Assumption holds, i_3 drops out, as well, and we get a strong implicature.

Simple disjunctions

(18) George is American or Canadian.

S has to be in one of the following belief states:

- i_1 : Poss_M(George is American) \land Poss_M(George is Canadian)
- i_2 : Poss_M(George is American) $\land \neg Poss_M(George is Canadian)$
- $i_3: \neg \text{Poss}_M(\text{George is American}) \land \text{Poss}_M(\text{George is Canadian})$
- i_4 : ¬Poss_M(George is American) \land ¬Poss_M(George is Canadian)
 - i_4 is inconsistent with the assumption that S believes what he says.
 - If i_2 or i_3 applied, S should/would have said something else.
 - Hence, S must be in belief state i_1 .

Bart Geurts Free choice

Epistemic free choice

(19) George may be American or Canadian.

S has to be in one of the following belief states:

- i_1 : Poss_M(George is American) \land Poss_M(George is Canadian)
- i_2 : Poss_M(George is American) $\land \neg Poss_M(George is Canadian)$
- i_3 : $\neg \text{Poss}_M(\text{George is American}) \land \text{Poss}_M(\text{George is Canadian})$
- i_4 : ¬Poss_M(George is American) \land ¬Poss_M(George is Canadian)
 - i_4 is inconsistent with the assumption that S believes what he says.
 - If i_2 or i_3 applied, S should/would have said something else.
 - Hence, S must be in belief state i_1 .

Why does this work?

Consider again:

(20) George may be American or Canadian.

One of whose alternatives is:

- (21) George may be American.
 - In an alternative-based account, the availability of (21) results in the inference that $\neg \mathbf{Bel}_{S}(21)$.
 - In an intention-based account, the availability of (21) causes certain belief states to be rejected, such as **Bel**_S¬(George is Canadian).

Bart Geurts Free cho

Concluding remarks

- The Standard Gricean view on Q-implicatures isn't completely off the mark. It has all the right ingredients, but fails to put them together in just the right way.
- In particular, alternatives remain crucial.
- But:
 - you don't always need to know what exactly the alternatives are, and
 - Q-implicatures aren't *driven* by available alternatives.
- Computing implicatures is a matter of reasoning about the speaker's intentional state: his beliefs, desires, etc.
 (Which is what Grice said all along.)