# Three Short Stories on Computerised Presupposition Projection

#### **Johan Bos**

University of Rome "La Sapienza" Dipartimento di Informatica

#### A little introduction

 My work is in between formal semantics and natural language processing/computational linguistics/Al

 Aim of my work is to use insights/adopt linguistic theories in applications that require natural language understanding

#### **Surprise**

- Surprisingly, very little work of formal semantics make it to real applications
- Why?
  - Requires interdisciplinary background
  - Gap between formal semantic theory and practical implementation
  - It is just not trendy --- statistical approaches dominate the field

## **Rob's Algorithm**

- Van der Sandt 1992
  - Presupposition as Anaphora
  - Accommodation vs. Binding
  - Global vs. Local Accommodation
  - Acceptability Constraints
  - Uniform way of dealing with a lot of related phenomena
- Influenced my work on computational semantics

#### **Three Short Stories**

#### World Wide Presupposition Projection

 The world's first serious implementation of Rob's Algorithm, with the help of the web

#### Godot, the talking robot

 The first robot that computes presuppositions using Rob's Algorithm

#### Recognising Textual Entailment

 Rob's Algorithm applied in wide-coverage natural language processing

#### The First Story

## World Wide **Presupposition Projection**

Or how the world came to see the first serious implementation of Rob's Algorithm, with the help of the internet...



#### **How it started**

- Interested in implementing presupposition
  - Already a system for VP ellipsis in DRT
  - Read JofS paper, also in DRT
- Lets add presuppositions
  - Met Rob at Summerschool ESSLLI Lisbon
  - Enter DORIS

## The DORIS System

- Reasonable grammar coverage
- Parsed English sentences, followed by resolving ambiguities
  - Scope
  - Pronouns
  - Presupposition
- Rob's Algorithm caused hundreds of possible readings, sometimes thousands

## Studying Rob's Algorithm

- The DORIS system allowed one to study the behaviour of Rob's Algorithm
- Examples such as:
  - If Mia has a husband, then her husband is out of town.
  - If Mia is married, then her husband is out of town.
  - If <u>Mia</u> is dating <u>Vincent</u>, then <u>her husband</u> is out of town.



## **Adding Inference**

 One of the most exciting parts of Rob's theory are the

#### **Acceptability Constraints**

- But it is a right kerfuffle to implement them!
- Some form of automated reasoning required...

## **Theorem Proving**

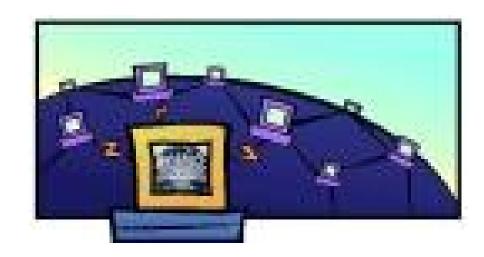
- First attempt
  - Translate DRS to first-order logic
  - Use general purpose theorem prover
  - Bliksem [by Hans de Nivelle]
- This worked, but...
  - Many readings to start with, explosion...
  - The Local Constraints add a large number of inference tasks
  - It could take about 10 minutes for a conditional sentence

#### **MathWeb**



- MathWeb [by Michael Kohlhase & Andreas Franke] came to the rescue
- Theorem proving services via the internet
- Interface Doris with MathWeb
- At the time this was a sensation!
- What happened exactly?

#### **World Wide Presupposition Projection**



- In order to find out whether Mia was married or not, thousands of computers world wide were used
- Just because of Rob's algorithm...

#### Six feet under

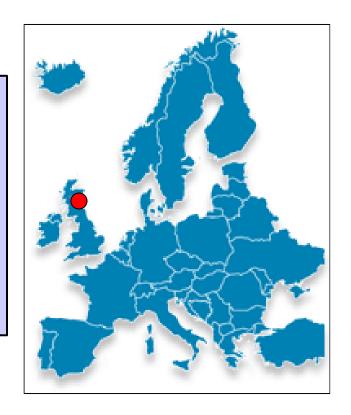
The DORIS system †
 1993-2001

- Why?
  - Limited grammatical coverage
  - Unfocussed application domain
  - It would take at least 20 years to develop a parser that was and robust and accurate [at least that was my belief]

### **The Second Story**

## Godot the talking robot

Or how a mobile, talking robot computed his presuppositions using Rob's Algorithm...



## **Human-Computer Dialogue**

- Focus on small domains
  - Grammatical coverage ensured
  - Background knowledge encoding
- Spoken Dialogue system = killer app
  - Godot the robot
  - Speech recognition and synthesis
  - People could give Godot directions, ask it questions, tell it new information
  - Godot was a REAL robot

#### **Godot the Robot**



Godot with Tetsushi Oka

#### **Typical conversation with Godot**

Simple dialogues in beginning

– Human: Robot?

– Robot: Yes?

- Human: Where are you?

Robot: I am in the hallway.

- Human: OK. Go to the rest room!

 Using the components of DORIS, we added semantics and inference

#### **Advanced conversation with Godot**

- Dealing with inconsistency and informativeness
  - Human: Robot, where are you?
  - Robot: I am in the hallway.
  - Human: You are in my office.
  - Robot: **No, that is not true.**
  - Human: You are in the hallway.
  - Robot: Yes I know!
- Obviously, we also looked at presupposition triggers in the domain

#### **Videos of Godot**

Video 1: Godot in the basement of Bucceuch Place





Video 2: Screenshot of dialogue manager with DRSs and camera view of Godot

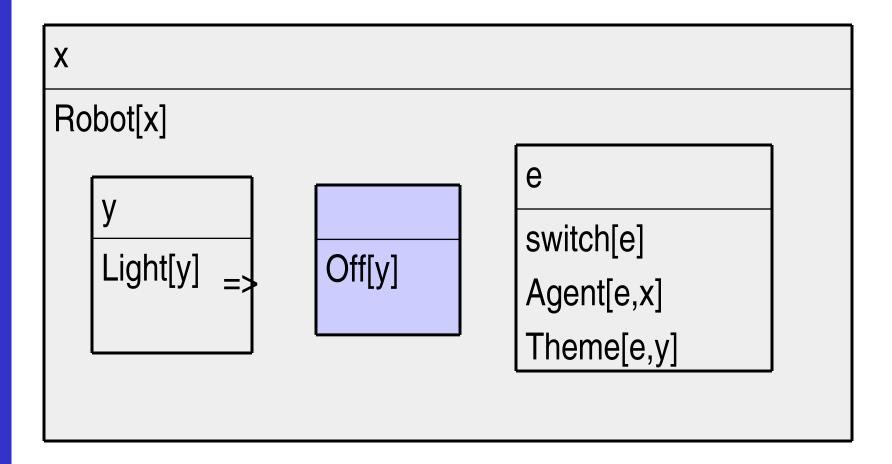
### **Adding presupposition**

- One day, I asked Godot to switch on all the lights [Godot was connected to an automated home environment]
- However, Godot refused to do this, responding that it was unable to do so.
- Why was that?
  - At first I thought that the theorem prover made a mistake.
  - But it turned out that one of the lights was already on.

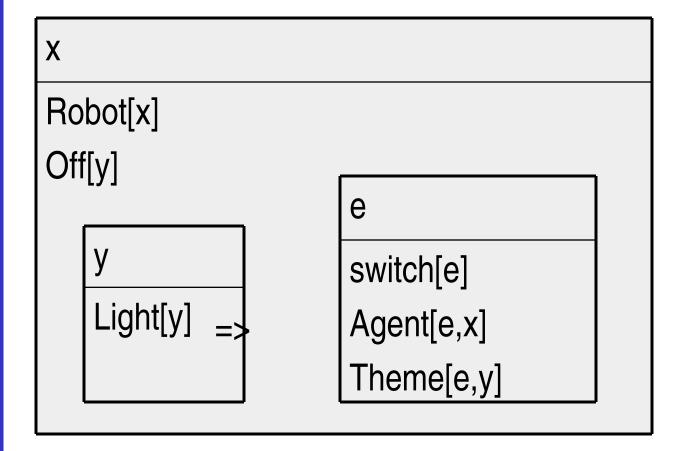
#### Intermediate Accommodation

- Because I had coded to switch on X having a
   precondition that X is not on, the theorem prover found
   a proof.
- Coding this as a presupposition, would not give an inconsistency, but a beautiful case of intermediate accommodation.
- In other words:
  - Switch on all the lights!
     [≠ All lights are off; switch them on.]
     [=Switch on all the lights that are currently off]

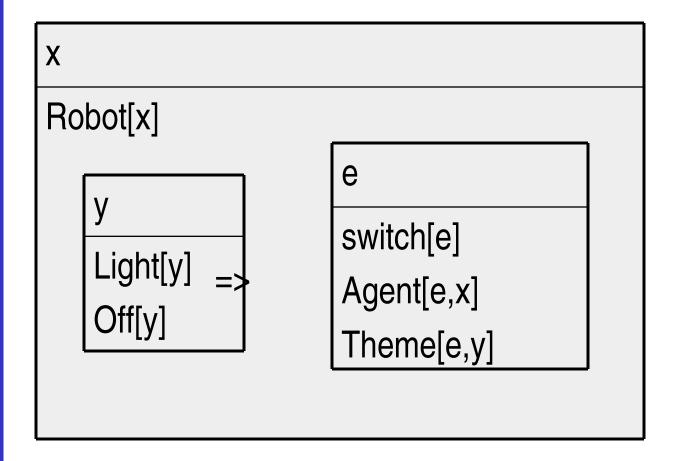
#### Sketch of resolution



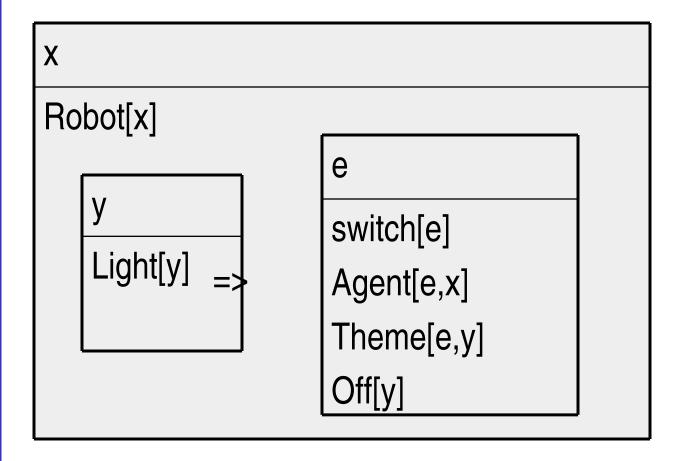
#### **Global Accommodation**



#### Intermediate Accommodation



#### **Local Accommodation**



## **Godot the Robot [later]**

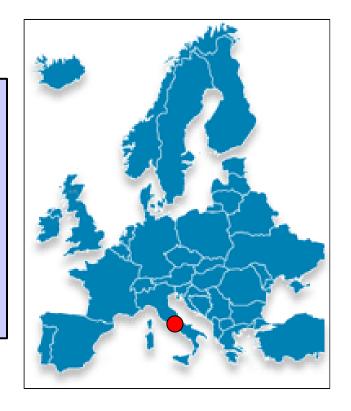


Godot at the Scottish museum

### **The Third Story**

## Recognising Textual Entailment

Or how Rob's Algorithm is applied to wide-coverage semantic processing of texts



2005-present

#### **Recognising Textual Entailment**

#### What is it?

- A task for NLP systems to recognise entailment between two (short) texts
- Proved to be a difficult, but popular task.

#### Organisation

- Introduced in 2004/2005 as part of the PASCAL Network of Excellence, RTE-1
- A second challenge (RTE-2) was held in 2005/2006
- PASCAL provided a development and test set of several hundred examples

#### RTE Example (entailment)

#### **RTE 1977** (TRUE)

His family has steadfastly denied the charges.

-----

The charges were denied by his family.

#### RTE Example (no entailment)

#### **RTE 2030** (FALSE)

Lyon is actually the gastronomical capital of France.

\_\_\_\_\_

Lyon is the capital of France.

## Aristotle's Syllogisms

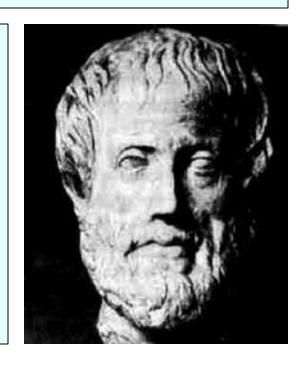
#### **ARISTOTLE 1** (TRUE)

All men are mortal.

Socrates is a man.

-----

Socrates is mortal.



#### **Recognising Textual Entailment**

# Method A: Flipping a coin



## Flipping a coin

- Advantages
  - Easy to implement
  - Cheap

- Disadvantages
  - Just 50% accuracy

#### **Recognising Textual Entailment**

# Method B: Calling a friend



## Calling a friend

- Advantages
  - High accuracy (95%)

- Disadvantages
  - Lose friends
  - High phone bill

## **Human Upper Bound**

#### **RTE 893** (TRUE)

The first settlements on the site of Jakarta were established at the mouth of the Ciliwung, perhaps as early as the 5<sup>th</sup> century AD.

-----

The first settlements on the site of Jakarta were established as early as the 5<sup>th</sup> century AD.

## **Recognising Textual Entailment**

# Method C: Semantic Interpretation

# **Robust Parsing with CCG**

- Rapid developments in statistical parsing the last decades
- Yet most of these parsers produced syntactic analyses not suitable for systematic semantic work
- This changed with the development of CCGbank and a fast CCG parser

#### **Combinatorial Categorial Grammar**

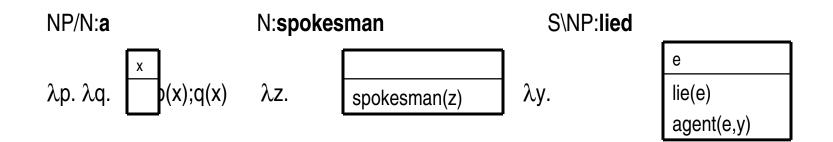
- CCG is a lexicalised theory of grammar (Steedman 2001)
- Deals with complex cases of coordination and long-distance dependencies
- Lexicalised
  - Many lexical categories
  - Few combinatorial rules

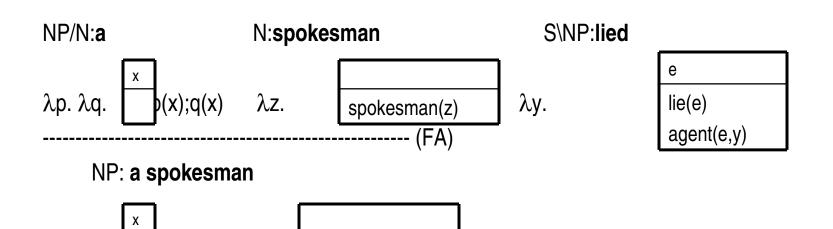
## **Coordination in CCG**

| np: <b>Artie</b> (s\np)/np: <b>likes</b> | $(x\x)/x$ :and | np: <b>Tony</b>              | (s\np)/np: <b>hates</b> | np: <b>beans</b> |  |
|------------------------------------------|----------------|------------------------------|-------------------------|------------------|--|
| (TR)                                     |                | (T                           | R)                      |                  |  |
| s/(s\np): <b>Artie</b>                   |                | s/(s\np): <b>Tony</b>        |                         |                  |  |
| (                                        | (FC)           |                              | ( <i>l</i>              | FC)              |  |
| s/np: <b>Artie likes</b>                 |                | s/np: <b>Tony hates</b>      |                         |                  |  |
|                                          |                |                              | (                       | (FA)             |  |
|                                          |                | (s/np)\(s/np):and Tony hates |                         |                  |  |
|                                          |                |                              |                         | (BA)             |  |
|                                          | s/n            | p: <b>Artie likes a</b>      | nd Tony hates           |                  |  |
|                                          |                |                              |                         | (FA)             |  |
|                                          |                | s: Artie likes               | and Tony hates          | beans            |  |

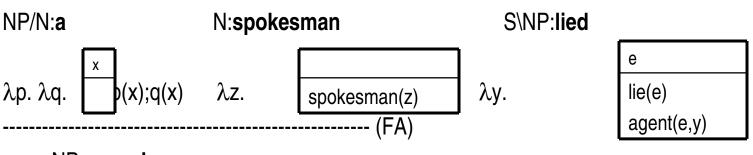
#### **CCG:** lexical semantics

| Category | Semantics                                         | Example   |
|----------|---------------------------------------------------|-----------|
| N        | λx. spokesman(x)                                  | spokesman |
| NP/N     | $\lambda p. \lambda q.(($ $x$ $(x));q(x))$        | a         |
| NP/N     | $\lambda p. \lambda q.(($ $x$ $(x)) \alpha q(x))$ | the       |
| S\NP     | ε<br>lie(e)<br>agent(e,y)                         | lied      |



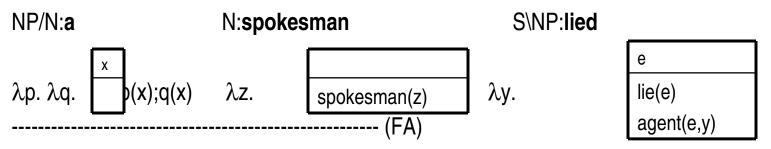


spokesman(z)



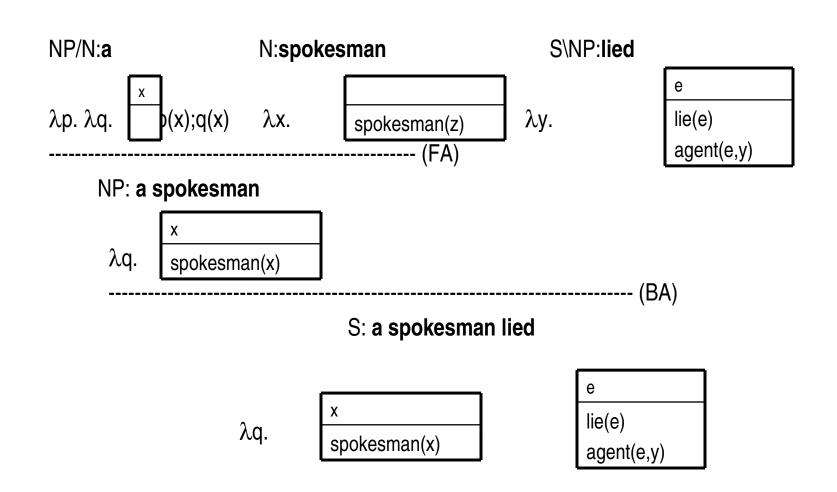
NP: a spokesman

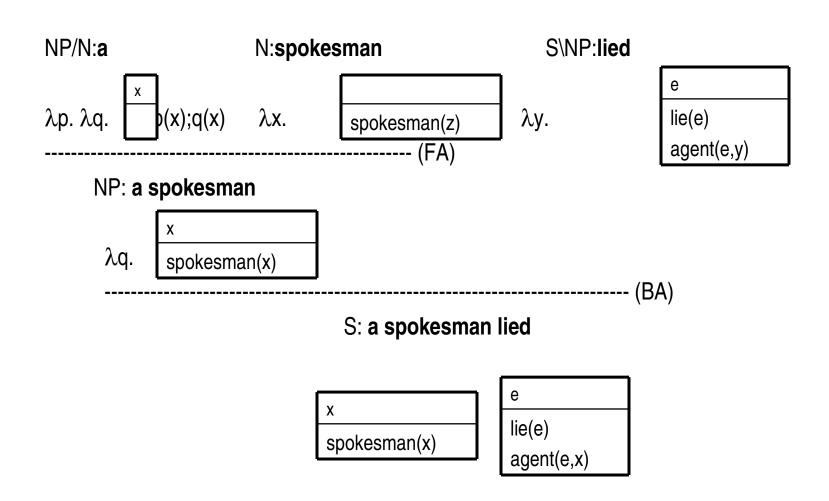
|     | Х |              | Ì. |
|-----|---|--------------|----|
| λq. |   | spokesman(x) | )  |

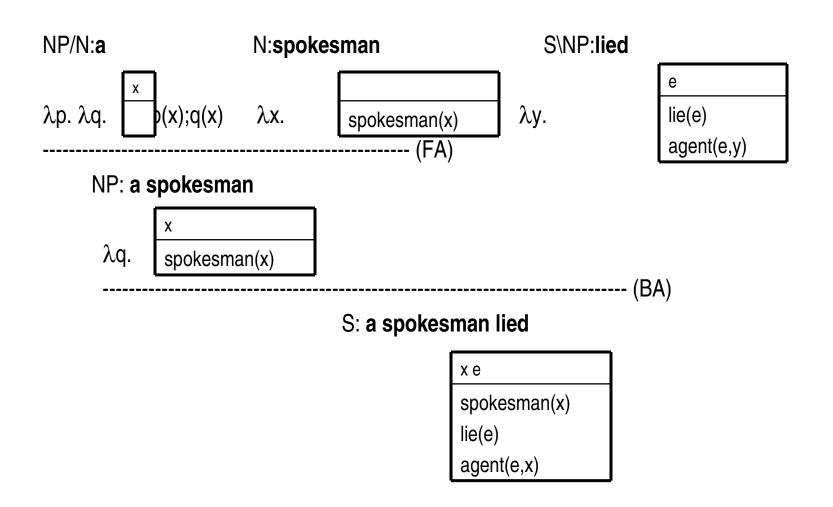


NP: a spokesman

λq. spokesman(x)







## **Implementation**

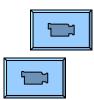
- Use standard statistical techniques
  - Robust wide-coverage parser
  - Clark & Curran (ACL 2004)
- Grammar derived from CCGbank
  - 409 different categories
  - Hockenmaier & Steedman (ACL 2002)

## **Example Output**

Example:

Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29. Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.

- Unresolved DRS
- Resolved DRS



Complete Wall Street Journal



#### **Back to RTE**

- Given a textual entailment pair T/H with text T and hypothesis H:
  - Produce DRSs for T and H
  - Translate these DRSs into FOL
  - Generate Background Knowledge in FOL
- Use theorem provers and model builders to determine the likelyhood of entailment
  - Theorem Proving: [**BK & T**']  $\rightarrow$  **H**'
  - Model Building: BK & T' and BK & T' & H'

# **Example**

#### **RTE-2 100** (TRUE)

This document declares the irrevocable determination of Edward VIII to abdicate. By signing this document on December 10<sup>th</sup>, 13, he gave up his right to the British throne.

\_\_\_\_\_\_

King Edward VIII abdicated on the 10th of December, 13.

# **Example**

#### **RTE-2 100** (TRUE)

This document declares the irrevocable determination of Edward VIII to abdicate. By signing this document on December 10<sup>th</sup>, 13, he gave up his right to the British throne.

\_\_\_\_\_\_

King Edward VIII abdicated on the 10th of December, 13.

- Vampire [theorem prover]:
  - no proof

# **Example**

#### **RTE-2 100** (TRUE)

This document declares the irrevocable determination of Edward VIII to abdicate. By signing this document on December 10<sup>th</sup>, 13, he gave up his right to the British throne.

\_\_\_\_\_\_

King Edward VIII abdicated on the 10th of December, 13.

- Paradox/Mace [model builders]:
  - similar models, i.e. difference between models for T and T+H small

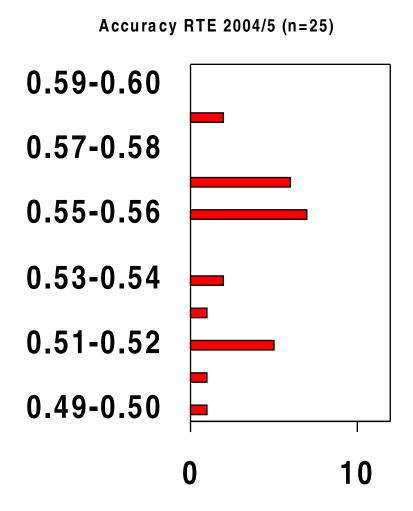
#### How well does this work?

- We tried this at the RTE-1 and RTE-2
- Using standard machine learning methods to build a decision tree using features
  - Proof (yes/no)
  - Domain size difference
  - Model size difference

Better than baseline, still room for improvement

#### RTE State-of-the-Art

- Pascal RTE-1 challenge
- Hard problem
- Requires semantics
- Requires a lot of background knowledge



## **Summary**

- Rob's Algorithm had a major influence on how computational semantics is perceived today
  - Implementations used in pioneering work of using first-order inference in NLP
  - Implementations used in spoken dialogue systems
  - Now also used in wide-coverage NLP systems