Strengthening Conditional Presuppositions

Robert van Rooij

Institute for Logic, Language and Computation

Amsterdam

Presuppositions of conditionals

- If Bart talks about presuppositions, *his boss* is happy.
- $his \ boss \rightsquigarrow Bart has a unique boss$
- *his boss* is happy \sim Bart has a unique boss
- If Bart talks about presuppositions, $his \ boss$ is happy. \sim Bart has a unique boss.
- How to acccount for this?

Satisfaction Theory

- $[A](C) = \{w \in C | w(A) = 1\}$, if A is atomic
- $[\neg\phi](C) = C [\phi](C)$
- $[\phi \land \psi](C) = [\psi]([\phi](C))$
- $[\diamondsuit \phi](C) = C$, if $[\phi](C) \neq \emptyset$, \emptyset otherwise
- $[\partial P]](C) = C$, if [P](C) = C, undefined otherwise
- $\phi \rightsquigarrow P$ iff $\forall C : [\phi](C)$ is defined: $\Rightarrow [P](C) = C$

Predictions

- $(\phi_P \wedge \psi) \rightsquigarrow P$
- $\neg \phi_P \rightsquigarrow P$
- $\Diamond \phi_P \rightsquigarrow P$
- $(\phi \land \psi_P) \rightsquigarrow (\phi \to P)$
- $(\phi \to \psi_P) \rightsquigarrow (\phi \to P)$
- WHY not always $\neg \phi_P \rightsquigarrow P$ and $\Diamond \phi_P \rightsquigarrow P$? and HOW $(\phi \rightarrow \phi_P) \rightsquigarrow P$?

Denial and modal subordination

- $\neg \phi_P \rightsquigarrow$ Somebody presupposes PSpeaker can make clear that hearer makes a false presupposition: Denial (vd Sandt, 1990)
- Actually: $\Diamond \phi_P \rightsquigarrow \exists v \in R_{pr}(w) : \text{ in } v, P \text{ is presupposed.}$
- Because normally $\forall v \in R_{pr}(w) : R_{pr}(v) = R_{pr}(w)$ it follows that $\forall v \in R_p(w) : \text{ in } v, P \text{ is presupposed} \Rightarrow P \text{ is presupposed}.$
- But introspection doesn't hold after assertion of $\diamond P$. $\diamond P. \diamond \phi_P$ ' is ok, presupposition of second sentence is satisfied.

Strengthening $(p \rightarrow r)$ to r

- Beaver: sometimes we want conditional presuppositions: If Spaceman Spiff ..., he will be bothered by the fact that
- Karttunen & Peters: Truth conditional grounds $(p \rightarrow r) \equiv (\neg p \lor r), \text{ so } \Box \neg p \text{ or } \Box r$ Appropriateness condition for conditional: $\Diamond p \Rightarrow \Box r$ But: why/when TC grounds for presuppositions?
- Soames and Beaver: Plausibility Strengthening because most plausible context. But: why/what makes one context more natural than other? (how could r be more plausible than weaker $p \rightarrow r$?)

Standard independence

- Intuition: $p \rightarrow r$ can be strengthened to r if p and r are mutually independent.
- 1. $\diamond (p \wedge r)$ 2. $\diamond (p \wedge \neg r)$ 3. $\diamond (\neg p \wedge r)$
 - 4. $\diamond(\neg p \land \neg r)$
- But $\Box(p \to r) \equiv \Box \neg (p \land \neg r) \equiv \neg \diamondsuit (p \land \neg r)$ $\Rightarrow p \text{ and } r \text{ cannot be independent from each other.}$
- Different (and weaker) notion of independence?

Independence of issues

- Claude Shannon (1948): Q orthogonal to Q'iff $E(Q \sqcap Q') = E(Q) + E(Q')$ iff $\forall q \in Q : \forall q' \in Q' : P(q \land q') = P(q) \times P(q')$
- David Lewis (1988): Q orthogonal to Q'iff $\forall u, w \in W : \exists v \in W : \langle u, v \rangle \in Q^R$ and $\langle v, w \rangle \in Q'^R$ iff $\forall q \in Q^P : \forall q' \in Q'^P : q \cap q' \neq \emptyset$
- Proposal: p independent with q in context C iff $[p?]^C$ orthogonal to $[q?]^C$ (in Lewis's sense), where $[p?]^C = \{\{v \in C : v \models p \text{ iff } w \models p\} : w \in C\}.$
- Notice that if $C \subseteq [p]$, then $[p?]^C = \{[p]^C\}$.

Is weaker notion of independence

- p independent with r in context C iff $[p?]^C$ orthogonal with $[r?]^C$ (in Lewis's sense)
- Is equivalent with notion proposed by Michael Franke to account for relevance conditionals

1.
$$(\Diamond p \land \Diamond r) \rightarrow \Diamond (p \land r)$$

2.
$$(\Diamond p \land \Diamond \neg r) \rightarrow \Diamond (p \land \neg r)$$

- 3. $(\Diamond \neg p \land \Diamond r) \rightarrow \Diamond (\neg p \land r)$
- 4. $(\Diamond \neg p \land \Diamond \neg r) \rightarrow \Diamond (\neg p \land \neg r)$
- This is a *weakening* of standard notion of independence.

Strengthening
$$(p \rightarrow r)$$
 to r

• Assertion:
$$p \to q_r$$

- Presupposition $p \to r \implies \Box(p \to r) \equiv \neg \Diamond (p \land \neg r)$
- Assume independence: $\neg \diamondsuit(p \land \neg r) \Rightarrow (\neg \diamondsuit p \text{ or } \neg \diamondsuit \neg r)$ $\Rightarrow \neg \diamondsuit p \text{ or } \neg \diamondsuit \neg r$
- Appropriateness condition: $\Diamond p$

$$\Rightarrow \neg \Diamond \neg r \equiv \Box r$$

Other Independence

- p independent with q iff $P(p \land q) = P(p) \times P(q)$
- This is equivalent with P(q/p) = P(q) (iff P(p/q) = P(q))
- Assume $p \to r$ is presupposed, i.e. $P(p \to r) = 1$
- Jackson (1987): Robustness. This should even be true if p turns out to be true: $P(p \rightarrow r/p) = 1$

• Notice
$$P(p \to r/p) = \frac{P(p \land (\neg p \lor r))}{P(p)} = \frac{P(p \land r)}{P(p)} = P(r/p)$$

• By independence: $P(r/p) = P(r) \Rightarrow P(r) = 1$

First imaginable objection

- If the problem was *difficult*, then Morton isn't *the one who* solved it. → Somebody solved the problem.
- If the problem was difficult, then somebody solved the problem.
- Problem: if problem was easy, it is more likely that somebody solved the problem → not independence, still presupposition.
- If the problem was *easy*, then
- Solution(?): clefts presupposes a question *Who solved the problem*?, or give rise to a uniqueness presupposition.

Second imaginable objection

- What if the speaker believes the antecedent to be false?
 Because ¬◊p, ⇒ (¬◊p or □r) satisfied,
 ⇒ strengthening to □r not predicted.
 But the unconditional presupposition should still come out:
- If that is John, John *stopped* smoking. But as a matter of fact that is not John.
- Reply: confusion between belief/knowledge and presupposition Speaker believes ¬p ≠ it is presupposed (by speaker) that ¬p. In fact, if this were so, the rider would be uninformative. So, ¬p has to be compatible with what is presupposed. This is enough to ensure strengthening.

Third imaginable objection

- What if it is *presupposed* that the antecedent is false?
 Because ¬◇_{presup}p, predict that presup not strengthened.
 But the unconditional presupposition should still come out:
- If that were John, John would have *stopped* smoking.
- Reply: p has to be compatible with the context in which the antecedent of the counterfactual is evaluated. This context is something like $C' = C \cup C_p^*$. p and r independent in this context. We conclude $\Box_{C'}r$. Because $C \subseteq C \cup C_p^*$, it follows that $C \models \Box r$, and thus that r is presupposed.

Final imaginable objection

- $Know(j,p) \rightsquigarrow p$
- John knows that if the problem was difficult, then somebody solved it.
- Satisfaction theory predicts:
 If the problem was difficult, then somebody solved it.
- Problem: why shouldn't we strengthen it to 'somebody solved the problem'?
- Reply: independence + Grice helps!

Explaining reply

- Don't assert $p \to q$ if p and q are taken to be independent. If we would, it followed that $\neg \diamondsuit p$ or $\Box q$.
- Either appropriateness condition $\diamond p$ is false, or (with Grice) we should have claimed shorter q.
- For similar reasons, don't assert $Know(j, p \rightarrow q)$ if John is presupposed to take p and q to be independent.
- If Know(j, p → q) asserted ⇒ John is not presupposed to take p and q to be independent. Probably, because we don't presuppose this. But then strengthening cannot go through.

Conclusion

- I finally understand why and when vdSandt's unconditional presuppositions result.
- It is because p and r are taken to be independent.
- K&P's and S&B's proposals can be understood in terms of it,
- and the imaginable objections disappear.
- I am sure Rob agrees.